Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.
🔍MCAR (Missing Completely at Random) Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.
📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи. ✅ Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.
🔍MAR (Missing At Random) Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.
📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть. ✅ Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.
🔍MNAR (Missing Not At Random) Пропуски зависят от самого значения, которое пропущено. То есть в данных есть систематическая причина, скрытая внутри пропуска.
📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий. ✅ Что делать: здесь простые методы не помогут. Часто требуется: — Моделировать механизм пропуска явно. — Включать индикаторы пропусков как отдельные признаки. — Использовать экспертные знания или специализированные байесовские подходы.
Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.
🔍MCAR (Missing Completely at Random) Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.
📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи. ✅ Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.
🔍MAR (Missing At Random) Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.
📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть. ✅ Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.
🔍MNAR (Missing Not At Random) Пропуски зависят от самого значения, которое пропущено. То есть в данных есть систематическая причина, скрытая внутри пропуска.
📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий. ✅ Что делать: здесь простые методы не помогут. Часто требуется: — Моделировать механизм пропуска явно. — Включать индикаторы пропусков как отдельные признаки. — Использовать экспертные знания или специализированные байесовские подходы.
“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.
Библиотека собеса по Data Science | вопросы с собеседований from cn